CONFINEMENT OF COLOR: OPEN PROBLEMS AND PERSPECTIVES

ADRIANO DI GIACOMO Pisa Univ. & I.N.F.N.

- · EXPERIMENTAL EVIDENCE
- ► LATTICE: THE DECONFINING PHASE TRANSITION
- · DUALITY
- DECONFINEMENT: A CROSSOVER? NA=2
- MECHANISMS OF CONFINEMENT;
 RESULTS & PERSPECTIVES

1. EXPERIMENTAL EVIDENCE.

SEARCH FOR QUARKS (1960 -1) q=±1/3, q=±3/3
NONE OBSERVED (P.D.G.)

mg & 10-27 EXPECTED IN S.C.H. Mg 10-12

σρεσ(ρ+ρ→9+x)= 10 cm² { Expekted in PT.TH σρ 10 cm²

SUPPRESSION FACTOR P = 10-15!

ONLY "NATURAL" EXPLANATION 9=0
OR MAREO, OP=0. L'THOOFT)

CONFINEMENT: AN ABSOLUTE
PROPERTY OF VACUUM BASED ON
SYMMETRY (LIKE SUPERCONDUCTIVITY, mgs)

DECONFINEMENT: AN ORDER - DISOR DER TRANSITION (NOT A CROSSOVER) AN ORDER PARAMETER EXISTS, BY WHICH A PRECISE DEFINITION OF CONFINED AND DECONFINED CAN BE GIVEN.

- "UN-NATURAL" ALTERNATIVE. CONFINED.

 TO-DECONFINED A CROSS-OVER; GO CONTINUOSLY FROM ONE SIDE TO THE OTHER

 9 # 0, BUT VERY SHALL IN CONFINED.

 NO OPERATIVE DEFINITION = OF CONFINED NED & DECONFINED (NO ORDER PRRAHETER)
- NO DATA EXIST ON CONFINEHENT OF GLUM
- DEFINITION OF CONFINENT; = ABSENCE OF COLORED PARTICLES IN ASYMPTOTIC STATES

2. LATTICE: THE DECONFINING PHASE TRANSITION.

- · CABIBBO PARISI (1975): THE HAGE DORN LIMITING TEMP. TH COULD INDICATE DECONFINEMENT.
- . INVESTIGATE BY LATTICE SINULATIONS AT FL NITE TEMPERATURE. INFIELD THEORY Z= Tr{e-+1} = [[d] e | dx [dr &(Z,=)

P.B.C. FOR BOSONS A.B.C. FOR FERHIONS,

$$T = \frac{1}{a L_E}$$
 { $a = LATTICE SPACING$
 $a = a(\beta, m)$ $\beta = \frac{2N}{g^2}$

bo = - 1/3 NC - 2 MJ < O (ASYMPTOTIC FREEDOM)

• QUENCHED THEORY (NO QUARKS)

(L) ORDER PARAMETER; SYMMETRY Z3

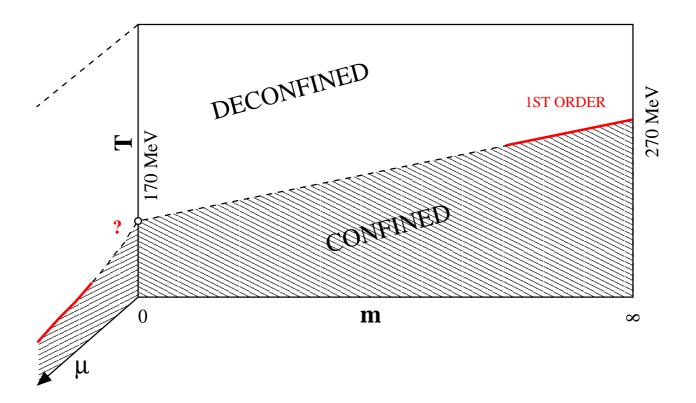
3 TE = 270 Her TOTE < W = 0

FINITE SIZE SCALING:

TRANSITION IS WEAK FIRST ORDER.

- FULL QCD (N₁=2)
 - · STRING BREAKING.
 - . Z3 NOT A SYMMETRY

HOW TO DEFINE CONFINED & DECONE


FIG 1 SAME DIFFICULTY AS IN EXPERIMENT

- ·M=0 CHIRAL TRANSITION CTY)
 ORDERPAR
- . MID QUENCHED (L) ORDER PARAMETER
- · M to ? NEITHER (L) NOR (QY) ARE GOOD ORDER PARAMETERS.
- TRANSITION LINE: ABRUPT CHANGE IN (L)

 ZUY), (H) OR A PEAK IN THE SUSCEPT!

 BILITIES CV, YON, XUY : XL2 (dx (<L(2) L(0)) <L)

 DECONDINGMENT!

. THE CHIRAL TRANSITION [Piseraki, wiletek 84]

ψ: Φ; = <Ψ; (1+ 1/5) Ψ; > i,j = 1,2... N, SU(N₄)⊗ SU(N₄) ⊗ V₄1 Φ → e^{id} U_L & U_R

Left = \frac{1}{2} Tr[0, \phi^{\tau} \tau_{\text{a}}]^{2} - \frac{m^{2}}{3} Tr[(\phi^{\text{a}})^{2}) + \color [\det \phi^{\text{a}}] \\
- \frac{\pi^{2}}{3} q_{\text{a}} Tr[(\phi^{\text{a}})^{\text{a}}) + \color [\det \phi^{\text{a}}] \\
\tau_{\text{ansatz}} \text{Wess_\text{\text{ansatz}}} \\
\tau_{\text{ansatz}} \text{Wess_\text{\text{\text{ansatz}}} \\
\text{vess_\text{\text{\text{ansatz}}}} \\
\text{vess_\text{\text{\text{\text{ansatz}}}} \\
\text{vess_\text{\text{\text{\text{ansatz}}}}} \\
\text{vess_\text{\text{\text{\text{ansatz}}}} \\
\text{vess_\text{\text{\text{\text{ansatz}}}}} \\
\text{vess_\text{\text{\text{\text{\text{\text{ansatz}}}}}} \\
\text{vess_\text{\text{\text{\text{ansatz}}}}} \\
\text{vess_\text{\

M+>3 [det \$] ~ [m]3 0(4) x O(2) NO I.R. STABLE
FIXED POINT -> 1St ORDER

Ny=0 [det+] ~ [m2] (i) [c=0 at To 0(4) 2ndor.
(ii) [c=0 at To 0(4) x0(2) 15tond

- (i) CROSS-OVER AT M (H) +0. A TRICRITICAL
 POINT AT M+0 [Shunyck. Skehener]
- (ii) FIRST ORDER AT M (M) +0, NO TRICAL POINT
- (i) "UNNATURAL" -> NO ORDER PARAMETER
- (ii) MATURAL ORDER DISORDER

 U

 INVESTIGATE ON THE LATTICE.

3. DUALITY

- DUALITY: A DEEP CONCEPT IN STATE STICAL MECHANICS, FIELD THEORY, STRING THEORY [KRAMERS, WANNIER 43, KADANOFF-CEVA 71]
 - _APPLIES TO SYSTEMS WITH NON LOCAL, TOPOLOGICALLY NON TRIVIAL EXCITATIONS. _ THESE SYSTEMS ADMIT TWO COMPLEMENTARY (EQUIVALENT) DESCRIPTIONS

DIRECT

DUAL

LOCAL FIELDS P M NON LOCAL TOPOLO GICAL EXCITATIONS CONVENIENT AT gaci (WEAK COUPLING)

M ARE LOCAL FIELDS <P>ORDER PARAMETERS (US) ORDER PARAMETERS 4 NONLOCAL EXCITATIONS CONVENIENT AT 9>>1 (STRONG (OUPLING) gr ~ 1

DUALITY MAPS THE STRONG COUPLING REGIME OF DIRECT INTO THE WEAK COUPLING OF DUAL. AND VICE VERSA.

· PROTOTYPE THEORY . 2d ISING MODEL (1+1)d PIELD THEORY [XADANOFF-CEYA 71]

O:+ 1 (5)=0 T>TC DUAL EXCITATIONS KINKS μ_{J} -154 by 192 | $\mu = \pm 1$ $\beta = \pm 1$ Sinh $\beta = \pm 1$ Sinh $\beta = \pm 1$ $\beta = \pm 1$ $\beta = 1$

QCD LOWT (STRONG COUPLING, DISORDERED)

ORDERED IN THE DUAL LANGUAGE

(M) THE ORDER PARAMETERS ['thooft 78]

IDENTIFY THE DUAL SYNMETRY AND THE CORRESPONDING TOPOLOGICAL EXCITATIONS.

- SOLITONS IN 3+1 d, MADE STABLE

 BY TOPOLOGY $G \rightarrow H$ $Ii_2(G/_H) \neq \{i\}$ G = SU(3) $H = SU(2) \otimes U(1) \rightarrow MONOPOLES$ E'HHOFT = Z $I'(G/_H) = Z^2$ $I'(G/_H) = Z^2$ I'(
 - IN 2+1 d DEPUBLIE G > H TC, (9H)

 TC, (SU(3)/23) = Z2 VORTICES

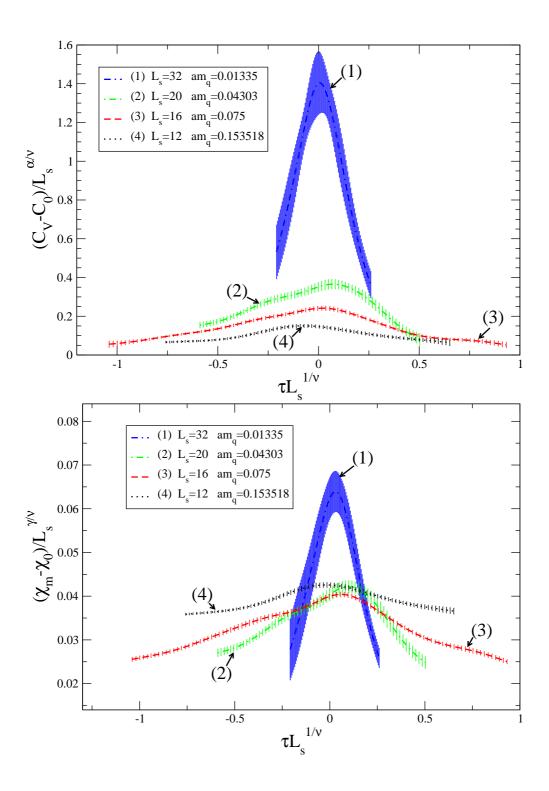
 [IN ABSENCE OF DYNAMICAL

 QUARKS]

- 4. DECONFINEMENT : THE CASE OF N_=2. A CROSSO VER?
- A FUNDAMENTAL ISSUE : DESERVES MORE ATTENTION AND NUMERICAL EFFORT TO BE SETTLED.
 - _ HID'ELIA, A. DIGIACONO C. PICA hep let 0503030
 - 1.5 Tereflop x year _ LATTICES 4x 163, 4x203, 4x243, 4.323
 - . CAREFUL SCANNING OF CRITICAL PEAKS OF
 - FINITE SIZE SCALING ANALYSIS (RENORMALIZATION GROUP) (Ls THE SPACIAL SIZE OF THE LATTICE)

$$c_v - c_o = L_s^{d/v} \varphi_c \left(\tau L_s^{V_v}, m L_s^{Y_h} \right)$$

$$\chi - \chi_o = L_s^{d/v} \varphi_s \left(\tau L_s^{V_v}, m L_s^{Y_h} \right) = 1 - \underbrace{a_s a_o}_{a_s(\beta, m)}$$


A TWO SCALE PROBLEM

•	U.C.	1/2	y n	d	8	8	
	0(4)	1.336(25)	2.487(3)	24 (6)	.3837(69)	4.852 (24)	
•	0(2)	1.496(20)	2.485(3)	005(7)	.3442(20)	4.826 (12)	
N,	istord	3	3	1	1	~	

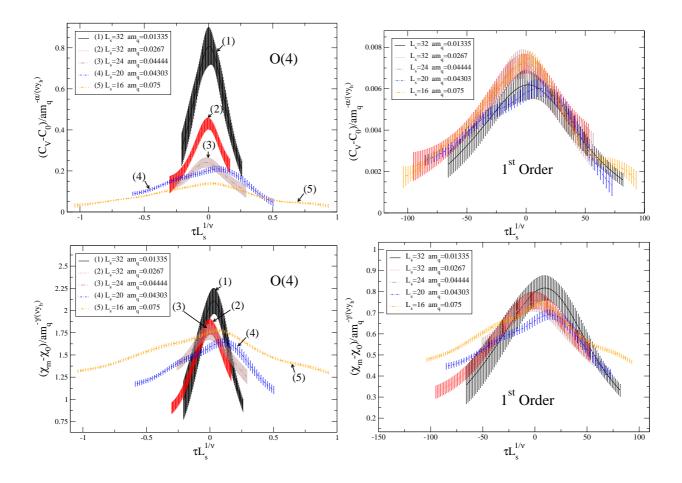
- · CV IS INDEPENDENT ON PREJUDICE ABOUT THE ORDER PARAMETER.
- STRATEGY #1: Yn THE SAME FOR O(2),0(4):

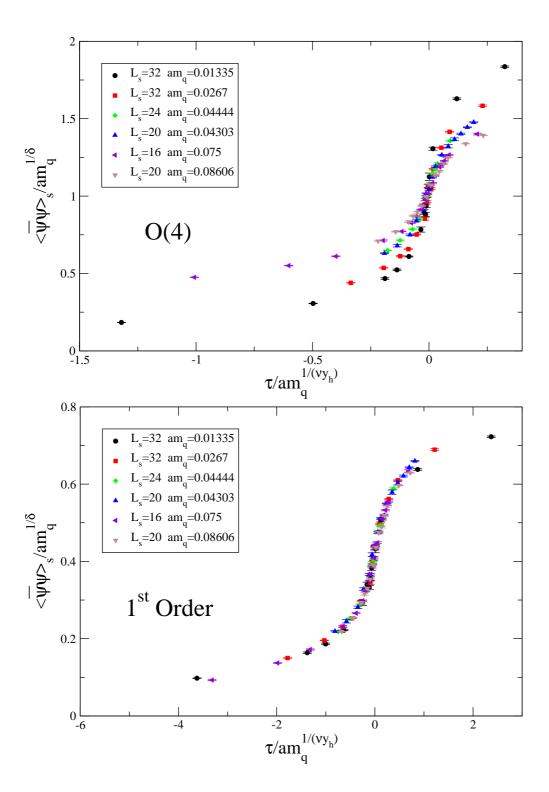
 KEEP mLs FIXED WHEN CHANGENG M, Ls.
- (Cy-Co)/d/y = Φ (= L') : TO.BE.CHECKED

Run1

· STRATEGY #2 Ls >> h.

CHECK FOR O(4) O(2)


FIG.


CONSISTENT WITH ISTORD

CONSISTENT WITH

IST ORDER

- . LOOK FOR METASTA BILLTIES : NO CONVINCING EVIDENCE
- · CONCLUSION
 - . O(4) [O(2)] 2nd ORDER EXCLUDED (X=50)
 - · SCALING CONSISTENT WITH ISTORDER
 - · VOLUMES NOT BIG ENOUGH TO DETECT HETASTABILITY?
- RESEARCH GOING ON WITH IMPROVED ALGORITHM, IMPROVED ACTION, LARGER LATTICES

- 5 MECHANISMS OF CONFINENT: RESULTS AND PERSPECTIVES,
 - . RECENT PROGRESS IN CURRENT APPROACHES
 - SEARCH FOR SYMMETRY [BARI, PISA, ITE? (morg., nally)

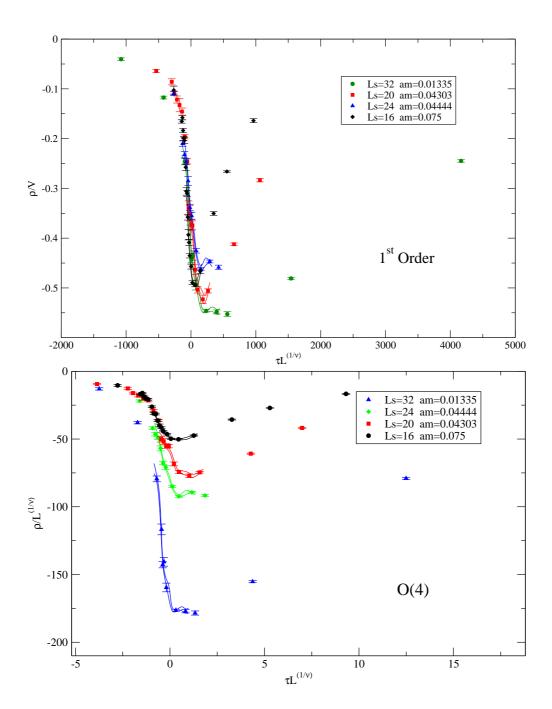
MONOPOLES : A MAGNETICALLY CHARGED.

OPERATOR < < >> > DUAL SUPERCONDUCTIVITY

STATUS. $\langle \mu \rangle \neq 0$ T<Tc $\langle \mu \rangle = 0$ T>Tc

QUENCHED, UNQUENCHED 4=2 ABELIAN PROJECTION INDEPENDENT

· Tate g= omen


FINITE SIZE SCALING S/1/2 = + (= Ls)

N=2 [D'Elie, A. DG, C.P. PLYS Rev D71, 114502 2005]

[SEE ALSO CEA HAL THE? 04002:018 2004]
CONSISTENT WITH 1ST ORDER

THESE DATA , TOGETHER WITH PREVIOUS DATA ON QUENCHED THEORY, IMPLY THAT

- DUCTOR AT TETE, NORMAL AT TOTE (THE DEC. TRANSITION IS ORDER-DISORDER)
- WHATEVER THE DUAL EXCITATIONS
 THEY ARE MAGNETICALLY CHARGED
 IN ALL ABELIAN PROJECTIONS.

- APPROACH CHOOSING A SPECIAL GAUGE

 [MAX. ABELIAN, MAX CENTER GAUGE]

 TO EXPOSE THE NON LOCAL EXCITATIONS

 (MONOPOLES, VORTICES) (ITEP, KANAZAWA)

 (SAN FRANCISCO, TUBINGEN, ZÜRICH, ...)
 - · "SURGICAL " ANALYSIS : ELIMI NATE SOMEHOU

 THE EXCITATIONS AND CHECK THAT PHYSICAL

 PROPERTIES DISAPPEAR.

 CONFINERENT RECHANISM IS UNDERSTOOD
- ANALYZE SEVERAL GAUGE GROUPS
 WITH THE SAME CENTER TO EXPLORE THE
 ROLE OF VORTICES [BERN HOLLAND ET AL
 NUCL. PHYS. B 668, 207, 2003
 INTERESTING RESULT: Q2 GAUGE GROUP
 CONFINES AND HAS NO CENTER.
- 4PHEND MENDLOGY OF MONOPOLES IN MAX.

 ABELIAN GAUGE. QUESS THE IR DYNAMICS

 WZAKHAROV + ITEP) DIMENSIONALITY OF

 EXCITATIONS.

MENT: STILL AN OPEN PROBLEM.

PERSPECTIVES

- · CLARIFY THE ISSUE OF ORDER.

 DISORDER V.S. CROSSOVER.
- · CLARIFY MANY ASPECTS OF CONFI-NEMENT IN G2, A NON INVASIVE HETHOD TO UNDERSTAND THE ROLE OF VORTICES
- TRY TO GET CONNECTION WITH ANALY.

 TIC RESULTS [seiberg Witten M2 SUSY]

 IN THAT RESPECT THE IDEAS ABOUT

 No CARMONI, SHIFMAN VENEZIAND

 EN FORTSCH. PHYSIK 52, 463, 2004.